Kinetics Based Models to Describe Environmental Degradation of Polymeric Sealants

> D. L. Hunston K. T. Tan, and C. C. White Engineering Laboratory National Institute of Standards and Technology

> > Introduction

Background – Previous Results Model Development Experiments and Model

Testing

Introduction

□ What is a sealant ?

- Elastomer used to prevent air & moisture intrusion into a structure
- Structural function as well

- Widely used throughout most structures (buildings, cars, etc.)
- 30 billion dollar a year industry
- 420,000 tons produced per year

NIS⁻

Challenge

- Modern architecture increases Challenge
 - Much more difficult to seal
 - Much more sealant required
 - <u>Often requires structural</u> <u>performance</u>

Guggenheim Museum in Bilbao, Spain

 Current materials are good, but eventually fail 55% fails within 10 years
95% fails within 20 years

Don't know its failed until you see extensive water damage

- **Critical Need <u>Good durability tests & predictive models</u>**
 - <u>Anticipate repair</u>
 - <u>Improve materials</u>

Background – Previous Results

- NIST initiated a consortium with a number of sealant suppliers and other laboratories to address this issue
- Potential variables
 - Temperature
 - Light (UV radiation)
 - Humidity
 - Strain

□ Test geometry

- Advantage: Widely used and accepted by industry (ASTM C719)
- Disadvantages: not a uniform strain field
- Apparent Modulus, E_a , is related to tensile modulus, E, by shape factor, S

$$E_a = S E$$

Metrology

- Two approaches to exposure
- Outdoor Aging

- Realistic but
- Time consuming
- Uncontrolled and never get same conditions twice complicates modelling and prediction

- Laboratory Aging
 - Can control variables
 - Add dynamic strain control
 - Potential to accelerate
 - Must relate to real life

- Ultimate goal: Use accelerated lab data and models to predict outdoor behavior
- Initial focus: Formulate models to fit lab data and use models to predict other lab results

Program Procedure

- Test procedure
 - Characterize fresh sample (laboratory conditions)
 - Subject to exposure
 - Extract and re-characterize (lab conditions)
 - Repeat last 2 steps
 - Result: Behavior vs exposure time
- Characterization method based on mechanical properties
 - Not material dependent
 - Mech. properties important
 - Challenge sealants are nonlinear viscoelastic materials
 - Stress relaxation experiment (ASTM C1735-11)

 Use theory of rubber elasticity to determine the apparent modulus curve

Sealant Behavior

- Sealants are elastomer so stress relaxation test provides indicated part of curve
- Monitoring how this curve is changed by exposure can tell us something about what is happening on a molecular level.

Previous Results

- Tests on 18 different sealants, 9 have shown environmentally induced changes to date.
 We learn 4 things.
 - First: For 8 of the 9 the dominant change was a downward shift in the curve with little or not change in shape.

- Behavior often similar despite the wide range of chemistry, formulations, and test conditions used.
- Second: Some surface changes but no evidence of serious cracks and debonds until late in the process so changes are probably at a molecular level until near the end.
- Third: Measure of degradation is $\mathbf{R} = \mathbf{E}/\mathbf{E}_o$ where E_o is the initial curve for fresh sample. Vertical shift produces horizontal straight line for R(t) vs t.
- Fourth: Since vertical position is important parameter, changes can be characterized by value, R, at fixed test time, say 100 s.

Model Development

- *E* represents the rubbery plateau modulus
- □ Ideal network $E = \frac{3RT}{2} \alpha$ where α is cross-link density.
- Sealants are far from an ideal network. Their networks have affective cross-link or junction points
 - Chemical links
 - Chemical and physical attachments to fillers
 - Crystalline regions
 - Rigid blocks in block co-polymers
 - Etc.

• Nevertheless, reasonable assumption that modulus is proportional to density of affective junction points, α

 $E = C \alpha$

• Environmental degradation then proceeds by a reduction in α until cracks for late in the process.

Equations

- For the process prior to the formation of cracks, consider the kinetics for reduction in a which produces the decrease in E via $E = C \alpha$
- Consider first exposure under constant or fixed environmental conditions
- Two <u>simplest</u> models where rate constant, $k(T, RH, I_{UV}, \varepsilon)$, is dependent on environmental variables but not exposure time.
- Zero order kinetics

- First order kinetics
- $d\alpha/dt = -k\alpha$ $d\alpha/dt = -k$ $\alpha = \alpha_o e^{-kt}$ $\alpha = \alpha_o - kt$ $E = E_{o} - [Ck]t$ $E = E_o e^{-kt}$ $R = E / E_o = 1 - [Ck / E_o]t$
- *R* as linear function of t
- \Box There is limit $t < [E_{a}/Ck]$

- $R = E / E_o = e^{-kt}$
- □ Not a linear function of t
- Plot $\ln(R)$ vs t is linear

Additional Option

- □ Not all cross-links can be degraded: different types or skin effect
 - $E = C\left(\alpha + \alpha_{\infty}\right)$
- **Zero** order kinetics

$$\alpha = \alpha_o - kt$$
$$E = E_o - [Ck]t$$
$$R = E / E_o = 1 - \left[\frac{Ck}{E_o}\right]t$$

Same equation but different limit

$$t < (E_o - E_{\infty}) / Ck$$

First order kinetics $\alpha = \alpha_o e^{-kt}$ $E = C\alpha_o e^{-kt} + C\alpha_{\infty}$ $E = (E_o - E_{\infty})e^{-kt} + E_{\infty}$ $R = (1 - R_{\infty})e^{-kt} + R_{\infty}$

□ Can linearize if R_{∞} is known and constant.

$$n\frac{R-R_{\infty}}{1-R_{\infty}} = -kt$$

- □ Usually not constant
- **3** possible equations: R vs t is linear, ln(R) vs t is linear or fit data with equation above

Extension of Models

- Previous equations for constant conditions, but in real exposure, the conditions are constantly changing.
- **Try simple damage accumulation approach**
 - Approximate continuous change with steps at constant conditions (<u>environment</u> <u>changes slowly</u>)
 - Determine increased damage at fixed conditions during each step, ΔD_i .
 - Value of Property after exposure time t_n is

$$P(t_n) = P(0) - \sum_{i=1}^{i=n} \Delta D_i$$

- ΔD_i depends on environmental conditions during step and perhaps the state of the material at start of the step
- **Challenge is to determine** ΔD_i **s**

Exposure Time

Challenge

- If we can define the measure of degradation so it is a linear function of time i.e R or $\ln(R)$, process simplified
 - Damage generated in Δt is same at any point in exposure
 - Need only single parameter, slope *s*, for a given set of conditions to determine $\Delta D = s \Delta t$
- Easy to determine slope but not for every possible condition.
- Generate data base of slopes for wide range of conditions, then apply an interpolation scheme to estimate others condition.

Exposure Time

So for model we need (1) data base, (2) interpolation scheme, and (3) damage accumulation equation. $P(t_n) = P(0) - \sum_{i=n}^{i=n} \Delta D_i$

If Behavior is not Linear

- □ If you cannot linearize equation, things are more complex.
- **Example:** First order with residuals

 $R = (1 - R_{\infty}) e^{-kt} + R_{\infty}$

- Can linearize if R_{∞} is independent of exposure conditions.
- This is probably not true in most cases.
- □ Now 2 parameters to determine for each set of environmental conditions, $k \& R_{\infty}$
 - We generate a data base for both k and R_{∞} at a wide range of conditions.
 - We use interpolation schemes for both k and R_{∞} to estimate values of parameters at environmental conditions not directly measured.
- □ Finally, we need a way to combine steps.

Consider Two Step Situation

- □ Base curves for two exposure.
- □ First expose at condition 1 for time, Δt_1 . Behavior follows red curve and. $R = (1 - R_{1\infty})e^{-k_1t} + R_{1\infty}$
- At the end of step 1 value of $R = R_1$ & $t = t_1$: $t_1 = \Delta t_1$ $R_1 = (1 - R_{1\infty})e^{-k_1 t_1} + R_{1\infty}$
- □ Now in second step, exposure changes to condition 2 for Δt_2

$$R = (1 - R_{2\infty})e^{-k_2(t_s + t - t_1)} + R_{2\infty}$$

• Can be rearranged to give $R = (R_1 - R_{2\infty})e^{-k_2(t-t_1)} + R_{2\infty}$

Can be generalized: Behavior in step, *i*, depends on the parameters k_i and $R_{i\infty}$ and the end position of previous step $R_{(i-1)}$ and $t_{(i-1)}$

Experiments and Model Testing

- Examine these models with Laboratory Aging data
- Need results where we have clear change in properties and most exposure time data.
- Kraton-D (styrene-butadiene-styrene triblock polymer)
 - Displays the properties of a sealant
 - Contains double bonds sensitive to oxidation so quicker degradation.
- **D** Tests
 - Relative humidity 50 %
 - UV Radiation 50 W/m²
 - Temperatures: 21 C, 31 C, 41 C, or 51 C
 - Fixed strain history: $\varepsilon_m = 0$ %, 11 %, or 21 %

Kraton Behavior

- Does aging produce a simple downward shift in the stress relaxation curves for this material?
- Yes, although not always as simple as we would like.
- □ Calculate *R* at 100 s for various exposure times.

Trail with Kraton Data

- Not all 12 conditions show degradation in the times tested, but
- 5 most severe conditions do show significant changes.
 - 21 % strain at 51 C,41 C, 31 C
 - 11 % strain at 41 C, 31 C
 - Each point is average of test on 4 specimens.
- □ Test 3 models
 - Not zero order
 - Not simple first order
 - First order with limit provides a good fit of the data

Test Model with Kraton

- Model is able to fit Kraton data at all 5 test conditions
- To test model, use data at right to determine parameters in equation
- Then conduct new tests and compare with predictions
- Use more complex exposure for test: two step experiment
 - Expose sample at one set of environmental conditions
 - Then change to a second set of conditions and complete exposure

NIS

Determine Model Parameters

- □ Model parameters generally show the expected trends more severe conditions have higher *k* and lower R_{∞}
- □ Can we use these parameters to predict behavior.

Use Data to Predict New Tests

- Good test of prediction capability is two step experiment – Three experiments
- Test 1: 50 % RH, Full UV, 21 % strain – 2 d at 51 C then 12 d at 41 C

Use Data to Predict New Tests

- Good test of prediction capability is two step experiment – Three experiments.
- Test 1: 50 % RH, Full UV, 21 % strain 2 d at 51 C then 12 d at 41 C.
- Test 2: 50 % RH, Full UV, 41 C
 10 d at 11 % strain then 10 d at 21 % strain.

Use Data to Predict New Tests

- Good test of prediction capability is two step experiment – Three experiments.
- Test 1: 50 % RH, Full UV, 21 % strain 2 d at 51 C then 12 d at 41 C.
- Test 2: 50 % RH, Full UV, 41 C
 10 d at 11 % strain then 10 d at 21 % strain.
- Test 3: 50 % RH, Full UV, 21 % strain – 2 d at 41 C then 12 d at 51 C
 - Captures trend but over predicts second step
 - Cracking may contribute to difference

NIS

Conclusions

Need additional data

- More evaluation experiments
- Additional sealants
- Better understanding of how to include stain
- Extend to include cracking
- Results are encouraging
 - Three different simple models to explore
 - All cases so far they capture trends in data
 - A number of cases have good agreement
 - Have know assumptions

