Technique for Monitoring Environmentally Induced Changes in Polymeric Sealants

> D. L. Hunston, and C. C. White Building and Fire Research Laboratory National Institute of Standards and Technology 100 Bureau Dr., Stop 8615 Gaithersburg, MD 20899-8615

Introduction Project Objective Experiments Results

Phase 1: Molecular level changes Phase 2: Macroscopic changes Conclusion

Introduction

What is a sealant ?

- Elastomer used to prevent moisture intrusion into a structure

- Widely used throughout most structures
- 30 billion dollar a year industry
- 420,000 tons produced per year

Challenge

• Current materials are good, but eventually fail

55% fails within 10 years95% fails within 20 years

Don't know its failed until you see extensive water damage

- Modern architecture increases Challenge
 - Much more difficult to seal
 - Much more sealant required
 - Often requires structural performance

Old vs. new

 Critical Need – <u>Measure</u> <u>durability & predictive models.</u> Guggenheim Museum in Bilbao, Spain

Metrology

Metrology

Outdoor Aging

- Problem
 - Time consuming
 - Never get same conditions twice
- Laboratory Accelerated Aging
 - NIST SPHERE Complete control of
 - » Light (UV radiation) up to 10 or 20 times sunshine
 - » Temperature
 - » Humidity

Make Comparison Outdoor Vs. Accelerated Aging

SPHERE: Simulated Photodegradation by High Energy Radiant Exposure

Exposure to Motion

- Successful with coatings but sealants have added variable continuously changing strain
 - Wood structures, strain driven by humidity
 - Other materials driven by temperature
 - Temperature Effect in sealant designed for ± 25 % strain

Yearly cycle range 25 % strain

Motion Control During Exposure

 Adapt device to allow programmed motion of sealants in chamber before, during, and after exposure

- Challenge: Monitor properties as a function of exposure time look for changes
- Many properties of interest but talk will focus on mechanical behavior

Program Objective

- Develop mechanical characterization technique to monitor changes
 - Phase I: Molecular level changes - possibly
 - » Effective cross-link density
 - » Glass to rubber transition
 - » Rubber to fluid transition
 - » Heterogeneity
 - Phase II: Macroscopic changes
 - » Cracks and debonding

Test geometry

- Advantage: Widely used and accepted by industry (ASTM C719)
- Disadvantages: not a uniform strain field
- Apparent Modulus, E_a , is related to tensile modulus, E, by shape factor, S

- Need only E_a to follow changes

Experiments

- Phase 1: Develop technique to monitor modulus - provides insight into molecular level changes
 - 3 challenges to overcome
 - Materials: 5 different sealants
 - » Composition unknown, but
 - » Span the range of chemistries and formulations in commercial materials designated Sealants 0, 2P, 3P, 4P, & 5P

- Phase 2: Extend technique to macroscopic changes
 - Two Tasks: Model development and exposure studies
 - Materials composition unknown
 - » Exposure Studies: material selected from many industry supplied candidates
 - Typical of commercial materials except but formulated to be susceptible to environmentally induced changes – designated Sealant 2
 - Model Development: material available in sufficient quantities designated Sealant 1

Phase 1: Test Development

- ♦ 3 Challenges
 - Reversibility
 - Mullins Effect
 - Test Method Selection

Challenge 1: Recovery

Deformations recoverable:

- Stresses rapidly reduce to zero (<1 % of maximum load) Full recovery.
- Time scale for recovery is typical of that for viscoelasticity: Loaded t_o recovery 10 t_o (to = 30 s)

- Stress Strain Curves
- When strain returns back to 0, some compressive stresses are generated.
- Monitor recovery (stress decay)

Challenge 2: Mullins Effect

- Load to a maximum stress, λ_{max}
- Second loading curve is different than first – Mullins Effect
- ◆ Magnitude is T/(T+P)

Challenge 2: Mullins Effect

- Load to a maximum stress, λ_{max}
- Second loading curve is different than first – Mullins Effect
- Magnitude is T/(T+P)
- Subsequent loading curves same as second if λ > λ_{max}
- Consequently, the usual test procedure is to preload to high strain then test at λ > λ_{max}

Initial Preconditioning

One load-unload-recover cycle eliminates Mullins Effect

Initial Preconditioning

- One load-unload-recover cycle eliminates Mullins Effect
- Two cycles both eliminate and characterize Mullins Effect
- Can see why complete recovery is important

Challenge 3: Test Method Selection

- Stress-strain curves are non straight lines so not linear elastic.
 - Time effect (viscoelastic)
 - Strain level effect (nonlinear)
 - Both
- Test method needs to separate the effects of time and strain level

Stress Relaxation Test - Characterization

- Apply step strain, ε , or extension ratio, λ (=1+ ε), and monitor load, *L*, as a function of time, *t*.
- Calculate Apparent Modulus, $E_a(t,\lambda) = \frac{3L(t)}{A_0(\lambda \lambda^{-2})}$ and plot vs time.

- Curve gives time dependence at a fixed strain viscoelasticity
- Vertical lines show strain dependence at a fixed time non-linearity.

Sample Results

- Strain levels curves are parallel <u>in range</u> <u>tested</u>
- Time dependence (curve shape) independent of strain level - separability

Sample Results

- Strain levels curves are parallel <u>in range</u> <u>tested</u>
- Time dependence (curve shape) independent of strain level - separability
- Can shift vertically to get master curve
- Is the behavior general or limited to this material ?

Master Curves possible for all 5 sealants

Test Strain Selection

- Time dependence provides most direct information on molecular level parameters
- Since time dependence (curve shape) is same for all strain levels in tested range
- We need test only one strain level to get information we desire

Final Test Procedure

Pre-strain of 25 % - many sealants designed for this limit

Test-strain levels 15 %

Example of Exposure Results

- Results of baseline and 7 different environmental exposures
- Exposure can change shape and vertical position of curve.
 - Shape change
 - » Shift in transitions
 - » Change in heterogeneity
 - Shift in vertical position
 - » Change in effective cross-link density

Test successful for Phase 1

Phase 2: New Problem

Stress relaxation at 15 % strain

- Exposure no cracks:
 - Shift down effective crosslink density
 - Shape no change in glass to rubber transition

Phase 2: New Problem

Stress relaxation at 15 % strain

 Interpretation is no longer straight forward

- Exposure no cracks:
 - Shift down effective crosslink density
 - Shape no change in glass to rubber transition
- More Exposure cracks

- Tensile load on cracked sample opens cracks
 - Reduced effective cross section lowering apparent modulus no change in time dependence
 - *f* represents fraction of cross section area that is cracked or debonded

- Compression loading closed cracks so little effect on apparent modulus
- Key Idea: Use the difference between the two moduli to estimate the effective cross section – characterize cracking

Model Development

Simple model

 Simple model but need to develop true relationships

- Two approaches
 - Insert cracks of know size and test
 - Use simple FEA calculations

Tests with known cracks

Two crack locations

- Insert cracks or debonds with a razor blade (sealant 1)
- Crack position
 - Center of sealant (crack)
 - Interface (debond)
- Field exposure with sealant 2 tends to give interface debonds but other sealants may differ
- Vary effective cross section, fraction cracked or debonded, *f*, goes from 0 to 1

Experimental Results

Typical results for cracked samples (sealant 1)

 All results can be modeled by power law

$$E_a = E_{100} (t / 100)^m$$

- *m* describes curve shape (in this case the slope)
- E₁₀₀ indicates vertical position
- As expected, cracks produce vertical shift but no change in shape (m is constant)

Tensile Test Results

Use ratio to normalize to 1

- Simple prediction
- Data slightly above simple prediction
- Center and interface cracks are the same
- FEA predictions consistent with experimental results

Tensile Test Results

Use ratio to normalize to 1

- Simple prediction
- Data slightly above simple prediction
- Center and interface cracks are the same
- FEA predictions consistent with experimental results
- Can model results with simple empirical equation (a₂ is a fit parameters)

 $E_{100,T} = E_{100,b,T} \left\{ 1 - a_2 f - (1 - a_2) f^2 \right\}$

Subscripts: *T* for tension and *b* for baseline (no cracks/debonds)

Compression Test Results

Use ratio to normalize to 1

- Data fall slightly below simple theory
- Results fit with one parameter, a_1 , line

$$E_{100,C} = E_{100,b,C} (1 - a_1 f)$$

 FEA results depend on assumption about slip between crack faces

Interface Cracks

 Interface crack releases lateral constrain – consider FEA results

• FEA analysis with two extremes: Full slip at interface & no slip at interface

Experimental results between two predictions

Crack Model

• Only two fit parameters a_1 and a_2

$$E_{100,T} = E_{100,b,T} \left\{ 1 - a_2 f - (1 - a_2 f^2) \right\}$$
$$E_{100,C} = E_{100,b,C} (1 - a_1 f)$$

- Cracks/debonds: Difference in modulus ratios allows estimation of *f*
- Uncertainty
 - f must be > 0.15 (15 %)
 - Otherwise uncertainty in f is ±0.07 (7 %)
- Assume primarily a geometry effect so: Same a₁ an a₂ for other sealants

• Extend Model to include molecular level changes ?

Molecular Change Model

- Curve shape change Molecular level changes
- Vertical shift Molecular and/or macroscopic level changes
 - Separate contribution of each

 Let *d* represent contribution to vertical shift on log-log plot from molecular change

$$E_{100,b} = d \cdot E_{100,bo}$$

- $E_{100,bo}$ is value for fresh sample
- Assume *d* is same in tension and compression

$$E_{100,T} = d \cdot E_{100,bo,T} \left\{ 1 - a_2 f - (1 - a_2) f^2 \right\}$$
$$E_{100,C} = d \cdot E_{100,bo,C} (1 - a_1 f)$$

Measure quantities in blue and determine d and f

Tension Tests

Exposure Tests

Sealant 2

• Exposure: 1 month in SPHERE

- UV: ≈ 2 years continuous sunshine
- Motion: Triangular wave between strains of 0 % and 25 % with period of 30 min.
- Relative Humidity: 25 %
- ◆ Condition 1 above at 30 °C
- Condition 2 above at 50 °C
- Specimens
 - 2 no exposure
 - 3 exposed at condition 1
 - 2 exposed at condition 2

Results for Exposed Specimens

 Results show significant curvature for sealant 2 so modeled with

$$E_a = E_{100} (t / 100)^m \left\{ 1 + (t_s / t)^n \right\}$$

- Fit parameters
 - » *m*, *n*, t_s curve shape
 - » E_{100} vertical position

Results for Exposed Specimens

 Results show significant curvature for sealant 2 so modeled with

$$E_a = E_{100} (t / 100)^m \left\{ 1 + (t_s / t)^n \right\}$$

- Fit parameters
 - » *m*, *n*, t_s curve shape
 - » E_{100} vertical position
- Exposured curves change in E₁₀₀ only
- Compression curves similar but smaller shifts in *E*₁₀₀
- Use E_{100} values from tension and compression to calculate molecular and macro level changes

Predictions from Experiments

Fraction of cross section cracked or debonded show above bars

- Total reduction in E_{100} is separated into components from molecular and macroscopic effects
- 2 of 3 samples exposed at 30 °C predict no cracking
- Both specimens exposed at 50 °C predicted to show significant cracking.
- Verify calculations ?
 - 3 tests

Test 1: Visual Observations

Test Temperature

 Specimens exposed at 30 °C show color change but little or no cracking in 2 out of 3 cases

Test 1: Visual Observations

- **Test Temperature**
- Specimens exposed at 30 °C show color change but little or no cracking in 2 out of 3 cases
- Specimens exposed at 50 °C show minor surface cracking and significant debonding

Test 2: Insert Known Cracks

Razor debonds in exposed but uncracked specimens

Test 2: Insert Known Cracks

Razor debonds in exposed but uncracked specimens

 Data (points) in good agreement with curves from experiments on sealant 1

Test 3: Measure Cracks

- Examine samples where cracks are predicted
- Coat cracks with ink, let dry, and pull to failure.
- Cracked areas on failure surface coated with ink use image analysis to determine f

Sample	f from modulus ration	f from image analysis
1	$(47 \pm 7) \%$	$(52 \pm 5) \%$
2	(56 ± 7) %	$(60 \pm 5) \%$

Conclusions

- Only a few results so far but the technique looks promising
 - For model system, method seems to provide good estimations for changes on both molecular and macroscopic levels
 - Non-destructive and potential to perform without removing sample from chamber
- Additional test required to validate test
 - Different cracking geometries (model development)
 - More data for exposed samples
 - Different sealant materials

