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Introduction 

– Widely used throughout most 

structures 

– 30 billion dollar a year industry 

– 420,000 tons produced per year 

 What is a sealant ? 
– Elastomer used to prevent 

moisture intrusion into a structure  
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Guggenheim 

Museum in 

Bilbao, Spain 

Challenge 

Old vs. new 

 Current materials are 

good, but eventually fail 

 55% fails within 10 years 

 95% fails within 20 years 

 Modern architecture 

increases Challenge 

– Much more difficult to seal 

– Much more sealant required 

– Often requires structural 

performance 

 Critical Need – Measure 

durability & predictive models. 

Don’t know its failed until you see extensive water damage 
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  Historically correlation 

     very poor 

  Need well controlled 

     laboratory tests 

  

Make Comparison  

Outdoor  

Vs. 

Accelerated Aging 

Metrology 

 Problem 
– Time consuming 

– Never get same conditions twice 

 Outdoor Aging 

 Laboratory Accelerated Aging 
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  Historically correlation 

     very poor 

  Need well controlled 

     laboratory tests 

  

Make Comparison  

Outdoor  

Vs. 

Accelerated Aging 

Metrology 

 Problem 
– Time consuming 

– Never get same conditions twice 

– NIST SPHERE - Complete 

control of 

» Light (UV radiation) – up to 

10 or 20 times sunshine 

» Temperature 

» Humidity 

 Outdoor Aging 

 Laboratory Accelerated Aging 

SPHERE: Simulated 

Photodegradation by High Energy 

Radiant Exposure 
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– Daily cycle range 7 % strain 

– Yearly cycle range 25 % strain 

Exposure to Motion 

 Temperature Effect in sealant designed for ± 25 % strain 

Summer 

Winter 

 Successful with coatings but sealants have added variable – 
continuously changing strain 
– Wood structures, strain driven by humidity 

– Other materials driven by temperature 
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 Challenge: Monitor properties as a function of exposure time – look 
for changes 

 Many properties of interest but talk will focus on mechanical behavior 

Motion Control During Exposure 

 Adapt device to allow programmed motion of sealants in 
chamber before, during, and after exposure 
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Program Objective 

– Need only Ea to follow changes 

 Test geometry 

aE S E

 Develop mechanical 
characterization technique 
to monitor changes 

– Phase I:  Molecular level 
changes - possibly 

» Effective cross-link density 

» Glass to rubber transition 

» Rubber to fluid transition 

» Heterogeneity 

– Phase II: Macroscopic 
changes 

» Cracks and debonding 

5.08 cm x 1.27 cm x 1.27 cm 

– Advantage: Widely used and accepted 
by industry (ASTM C719) 

– Disadvantages: not a uniform strain 
field 

– Apparent Modulus, Ea, is related to 
tensile modulus, E, by shape factor, S 
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Experiments 

 Phase 1: Develop 
technique to monitor 
modulus - provides 
insight into molecular 
level changes 

— 3 challenges to overcome 

― Materials:  5 different 
sealants 

» Composition unknown, 
but 

» Span the range of 
chemistries and 
formulations in 
commercial materials 
designated Sealants 0, 
2P, 3P, 4P, & 5P 

 Phase 2: Extend technique to  

macroscopic changes 

― Two Tasks: Model development 

and exposure studies 

― Materials – composition unknown 

» Exposure Studies:  material 

selected from many industry 

supplied candidates 

o Typical of commercial materials 

except but formulated to be 

susceptible to environmentally 

induced changes – designated 

Sealant 2 

» Model Development: material 

available in sufficient quantities -  

designated  Sealant 1 
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Phase 1: Test Development  

  3 Challenges 

–  Reversibility 

–  Mullins Effect 

–  Test Method Selection 
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Challenge 1: Recovery 

 Deformations recoverable: 

– Stresses rapidly reduce to zero (<1 % 

of maximum load) – Full recovery. 

– Time scale for recovery is typical of 

that for viscoelasticity: Loaded to – 

recovery 10 to    (to = 30 s) 
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 When strain returns back to 0, 
some compressive stresses are 
generated.   

 Monitor recovery (stress decay)  
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Challenge 2: Mullins Effect 

 Second loading curve is different 

than first – Mullins Effect 

 Magnitude is T/(T+P) 
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Challenge 2: Mullins Effect 

 Second loading curve is different 

than first – Mullins Effect 

 Magnitude is T/(T+P) 
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 Load to a maximum stress, lmax 

 Subsequent loading curves same as 

second if l > lmax 

 Consequently, the usual test 

procedure is to preload to high 

strain then test at l > lmax 
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Initial Preconditioning 

Time, t   (s)
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Characterization 

 

Test ? 

 One load-unload-recover cycle eliminates Mullins Effect 
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Initial Preconditioning 
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 Two cycles both eliminate and characterize Mullins Effect 

 Can see why complete recovery is important 

 

Characterization 

 

Test ? 

 One load-unload-recover cycle eliminates Mullins Effect 

Next 

Challenge 
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Challenge 3: Test Method Selection 

 Stress-strain curves are 
non straight lines so not 
linear elastic. 

– Time effect (viscoelastic) 

– Strain level effect (non-
linear) 

– Both 

 Test method needs to 
separate the effects of 
time and strain level  
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 Stress Relaxation Test - Characterization 

– Vertical lines show strain dependence at a fixed time – non-linearity. 

 Apply step strain, , or extension ratio, l (1+ ), and monitor load, L, as a 
function of time, t.  
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– Curve gives time dependence at a fixed strain - viscoelasticity 
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Sample Results 

 Strain levels curves 
are parallel in range 
tested 

 Time dependence 
(curve shape) 
independent of strain 
level - separability 
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Sample Results 

 Can shift vertically 

to get master curve  

 Strain levels curves 
are parallel in range 
tested 

 Time dependence 
(curve shape) 
independent of strain 
level - separability 

 Is the behavior general or 

limited to this material ? 
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Sealant 5P
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Test Strain Selection 

 Time dependence 
provides most direct 
information on molecular 
level parameters 

 Since time dependence 
(curve shape) is same for 
all strain levels in tested 
range 

 We need test only one 
strain level to get 
information we desire 
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Final Test Procedure 

Time, t   (s)

S
tr

a
in

, 
  

  
(%

)

t
0

10 t
010 t

0t
0

Test strain = 
x

Pre-strain = 
p

t
x

0

 Pre-strain of 25 % - many sealants designed for this limit 

 Test-strain levels 15 % 
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Example of Exposure Results 

 

Test successful for Phase 1 
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 Exposure can change shape 

and vertical position of 

curve.  

– Shape change 

» Shift in transitions 

» Change in heterogeneity  

– Shift in vertical position 

» Change in effective 

cross-link density 
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Phase 2:  New Problem 
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 Stress relaxation at 15 % strain  Exposure – no cracks: 

– Shift down - effective crosslink 

density 

– Shape – no change in glass to 

rubber transition 
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Phase 2:  New Problem 
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 Stress relaxation at 15 % strain  Exposure – no cracks: 

– Shift down - effective crosslink 

density 

– Shape – no change in glass to 

rubber transition 

 More Exposure – cracks 

 Interpretation is no longer 

straight forward 
Surface cracks Debonds 



NIST 

Key Idea 

 Tensile load on cracked sample opens 
cracks 

– Reduced effective cross section 
lowering apparent modulus no 
change in time dependence 

– f represents fraction of cross section 
area that is cracked or debonded 
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Key Idea 

 Key Idea: Use the difference between the two moduli to 
estimate the effective cross section – characterize cracking 

 Tensile load on cracked sample opens 
cracks 

– Reduced effective cross section 
lowering apparent modulus no 
change in time dependence 

– f represents fraction of cross section 
area that is cracked or debonded 
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 Compression loading closed cracks so little effect on apparent modulus 
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Model Development 
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Simple model but 

need to develop 

true relationships 

Two approaches 

– Insert cracks of 

know size and test 

– Use simple FEA 

calculations 
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Tests with known cracks 

 Field exposure with sealant 2 

tends to give interface debonds 

but other sealants may differ 

 Vary effective cross section, 

fraction cracked or debonded, 

f, goes from 0 to 1 

 Insert cracks or debonds with 

a razor blade (sealant 1) 

 Crack position 

– Center of sealant (crack) 

– Interface (debond) 

Two crack locations 
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Experimental Results 

 As expected, cracks 

produce vertical shift but 

no change in shape (m is 

constant) 

– m describes curve shape (in 

this case the slope)  

– E100 indicates vertical 

position 

100 ( /100)m

aE E t

 All results can be modeled 

by power law 
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 Typical results for cracked 

samples (sealant 1) 
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Tensile Test Results 

 Data slightly above simple 
prediction 

 Center and interface 
cracks are the same 

 FEA predictions consistent 
with experimental results 

 Simple prediction  

Fraction Cracked/Debonded, f

0.0 0.2 0.4 0.6 0.8 1.0

E
1
0
0
,T

 /
 E

1
0
0
,b

,T

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Fraction Cracked/Debonded, f

0.0 0.2 0.4 0.6 0.8 1.0

E
1

0
0

,T
 /

 E
1

0
0

,b
,T

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Interface

Center

Fraction Cracked/Debonded, f

0.0 0.2 0.4 0.6 0.8 1.0

E
1

0
0

,T
 /

 E
1

0
0

,b
,T

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Interface

Center

FEA Interface

FEA Center

Use ratio to normalize to 1 



NIST 

Tensile Test Results 

 Data slightly above simple 
prediction 

 Center and interface 
cracks are the same 

 FEA predictions consistent 
with experimental results 

 Can model results with 
simple empirical equation 
(a2 is a fit parameters) 

 Simple prediction  
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Subscripts: T for tension and b for baseline (no cracks/debonds) 
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Fraction Cracked/Debonded, f
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 Data fall slightly below 
simple theory 

 Results fit with one 
parameter, a1, line 
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Experimental results between two predictions 

Debond region 

Slip No slip 

 Interface crack releases lateral 

constrain – consider FEA results 

 FEA analysis with two extremes: 

Full slip at interface & no slip at 

interface 
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Crack Model 

 Uncertainty 

– f must be > 0.15 (15 %) 

– Otherwise uncertainty in f is 

±0.07 (7 %) 

 2
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 Only two fit parameters a1 and a2 

 Assume primarily a geometry 

effect so: Same a1 an a2 for other 

sealants 
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 Cracks/debonds:  Difference in 

modulus ratios allows estimation of  f 

 Extend Model to include molecular level changes ? 
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Molecular Change Model 

 Curve shape change - Molecular 

level changes  

 Vertical shift – Molecular and/or 

macroscopic level changes 

– Separate contribution of each 
100, 100,b boE d E 

– E100,bo is value for fresh sample 

 Measure quantities in blue and 

determine d and f 

 Let d represent contribution to 

vertical shift on log-log plot from 

molecular change 
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dE E a af f

d fE E a

   

 





 Assume d is same in tension 

and compression 
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Exposure Tests 

 Sealant 2 

 Exposure: 1 month in SPHERE 
– UV:  2 years continuous sunshine 

– Motion: Triangular wave between 
strains of 0 % and 25 % with 
period of 30 min. 

– Relative Humidity: 25 % 

 Condition 1 – above at 30 oC 

 Condition 2 – above at 50 oC 

  Specimens 
– 2 no exposure 

– 3 exposed at condition 1 

– 2 exposed at condition 2 
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Results for Exposed Specimens 

Baseline Tension, 14.84 % Strain
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» m, n, ts – curve shape 

» E100 vertical position 

 Results show significant curvature 

for sealant 2 so modeled with 
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Results for Exposed Specimens 

Baseline Tension, 14.84 % Strain
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– Fit parameters 

» m, n, ts – curve shape 

» E100 vertical position 

 Results show significant curvature 

for sealant 2 so modeled with 

 Use E100 values from tension and compression to calculate molecular 

and macro level changes 
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Tension Tests
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smaller shifts in E100 
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Predictions from Experiments 
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 Both specimens exposed at 

50 oC predicted to show 
significant cracking. 

 Verify calculations ? 

– 3 tests 

Fraction  of cross section cracked 

 or debonded show above bars 
 Total reduction in E100 is 

separated into components 

from molecular and 

macroscopic effects 

 2 of 3 samples exposed at 

30 oC predict no cracking 
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Test 1: Visual Observations 

 Specimens exposed at 30 oC show color change but little or 

no cracking in 2 out of 3 cases 
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Test 1: Visual Observations 

 Specimens exposed at 50 oC show minor surface cracking 

and significant debonding  

 Specimens exposed at 30 oC show color change but little or 

no cracking in 2 out of 3 cases 
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Test 2:  Insert Known Cracks 
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Test 2:  Insert Known Cracks 

 Data (points) in good agreement with curves from 

experiments on sealant 1 
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Test 3: Measure Cracks 

 Coat cracks with ink, let dry, and pull to failure. 
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 Cracked areas on failure surface coated with ink – use image analysis to 

determine f 

 Examine samples where cracks are predicted 

Debond 

Sample f  from modulus ration f  from image analysis 

1 (47 ± 7) % (52 ± 5) % 

2 (56 ± 7) % (60 ± 5) % 
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Conclusions 

 Only a few results so far but the technique looks 

promising 

– For model system, method seems to provide good estimations for 

changes on both molecular and macroscopic levels 

– Non-destructive and potential to perform without removing 

sample from chamber 

 Additional test required to validate test 

– Different cracking geometries (model development) 

– More data for exposed samples 

– Different sealant materials 


