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SUMMARY 

The multiple equilibria for the binding of a ligand A by a 
macromolecule P with n binding sites may be formulated in 
terms of a stoichiometric analysis or on the basis of a site- 
oriented scrutiny. The dependence of binding on ligand con- 
centration can always be correlated in terms of n stoichio- 
metric’binding constants, Ki, even if there are interactions 
between sites that accentuate or attenuate binding afhnities. 
A corresponding correlation in terms of site binding con- 
stants, kj, under the most general circumstances depends on 
the definition of nZnml difierent constants of which Zn - 1 
are independent. If experimental data are correlated in terms 
of R parameters k,, & . . . kx in an equation of the site-bind- 
ing form, 

I-= z: 
kT(A) 

kT=kd$. . . ,kX 
m ’ 

then there is no guarantee that the values of &, IQ, etc., have 
any unique relationships to site binding constants. Examples 
are given to illustrate this point. Equations are derived for 
relating stoichiometric binding constants to site binding con- 
stants, for the general case and for various special circum- 
stances. These equations make it possible to define and 
analyze binding in systems with interactions and conforma- 
tional accommodations. Accordingly, a graphical procedure 
is described (in which i& is plotted against i, the stoichio- 
metric binding step) that provides an atiity profile for con- 
cise representation of magnitudes of binding constants and 
for detecting interactions that accentuate or attenuate site 
binding athnities. 

ornetry of the combinations and the strength of the interactions. 
The extent of uptake of a small molecule by a macromolecule 
depends on the number of sites available on the latter, their 
affinity for the ligand, and the chemical potential or concentra- 
tion of the nonbound species of the ligand. 

Recognizing that a given protein macromolecule, P, may have 
a multiplet of sites for binding a specific ligand A, we express 
the mass law relationship in terms of a series of multiple equilib- 
ria. Two different formulations may be used for this purpose, 
one being stoichiometric in its outlook, the other being site- 
oriented. The binding constants derived by the two approaches 
are not the same in magnitude nor in the binding step to which 
they must be assigned. Furthermore, the empirical binding 
parameters obtained by common graphical methods of analysis 
may bear no relationship to the site binding constants they super- 
ficially resemble. It is the purpose of this exposition to clarify 
the distinction between stoichiometric binding constants and 
site binding constants, to illustrate their relationships with 
empirical binding parameters and with each other, and to discuss 
the range and limitations in the two modes of analysis of experi- 
mental binding data. 

STOICHIOMETRIC BINDING CONSTANTS 

As has been described in detail recently (l), the stoichiometric 
formulation focuses on the sequential stoichiometric species PAi, 
PAZ, etc., participating in the equilibria between protein P and 
ligand A, 

pAi-1 + A = PAi (1) 

Stoichiometric equilibrium constants, Kc, are defined by the 
equation 

A central aspect of any general study of the interactions of a In terms of stoichiometric equilibrium constants, r, the moles of 

small molecule with a biological macromolecule is the determina- bound A per mole of total protein, may be expressed as (2-4) 

tion of the distribution of-ligand between macromolecule and 
bulk solvent. This distribution is a manifestation of the stoichi- 

* This investigation was supported in part by a grant from the 
National Science Foundation and by the Office of Naval Research. 

$ To whom requests for reprints should be addressed at : Naval 

Kl(A) + 2KL&(A)’ + ..* 
r = n (3) 

1 + Kl(A) + Kl&(.4)’ + --* = 1 + z ( fiKe) (A? 

1 p=l 
Research Laboratory, Chemistry Division (6170), Washington, 
D.C. 20375. where n is the number of binding sites on each protein molecule. 
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SITE BINDING CONSTANTS WREN SITES HAVE FIXED AFFINITIES 

Alternatively, if one focuses on the individual sites of binding, 
the multiple equilibria may be represented by 

JP + A = jPA (4) 

where the left-hand subscript denotes a particular site. Corre- 
spondingly, the site equilibrium constants, ki, are defined by 

kj = 
cjPA) 

(5) 
CjP) (A) 

When the individual sites have aflinities that do not change with 
the extent of occupancy by ligand, the total moles of bound 
ligand at all sites is (5-7) 

RELATIONS BETWEEN STOICHIOYETRIC AND SITE BINDINQ 

CONSTANTS WHEN SITES HAVE FIXED AFFINITIES 

Since r of Equation 3 designates the same experimental quan- 
tity &S that in Equation 6, the constants Ki must be related to kj. 
The relationships between them have been deduced by different 
procedures (1,8-11) and are given by Equations 7 to 10. 

.n 
& = kl + ka + . . . + kn = x k. 

Jl 
A=1 

(7) 

SITE BINDING CONSTANTS WHEN AFFINITIES CHANGE WITH 

EXTENT OF OCCUPANCY 

A stoichiometric formulation is always applicable to the corre- 
lation of binding data for it is a classical thermodynamic analysis. 
However, the specific site representation as described above is 
inadequate (1). The type of difficulty encountered in a constant- 
site analysis can be illustrated, for example, with aminoethyl- 
mercaptide ion, H2NCH&H$S-. The sequential uptake of two 
H+ ions by H2NC&CH& can be correlated thoroughly by 
Equation 3 using two stoichiometric equilibrium constants KI 
and Kz. On the other hand, four site binding constants must be 
assigned (1) to H~NCHZCHZS-. It becomes apparent on reflection 
that one would encounter difficulties trying to formulate r in 
terms of Equation 6. If one used a two-term equation, which pair 
of the four site constants should be inserted for the two kp? 
Alternatively, one might extend the number of terms in Equation 
6 to four, but that is unacceptable since it implies that T can reach 
4 (sites) as (A) + 00. One can, of course, arbitrarily fit r and (A) 
to a two-term form of Equation 6 with empirical parameters k, 
and ka (12). However, that would still leave us with the question 
of what is the relationship of empirical le, and k,g to the four site 
constants. It is of interest, therefore, to examine the relationship 
between thii type of empirically-determined parameter and the 
site binding constants for a completely general reaction. To 
formulate this problem, we must first extend the site-oriented 
approach to systems where the binding atbnities depend on the 
extent of occupancy. Related problems appear in the analysis of 
multiple dissociations of protons from proteins (9, 10). The ap- 
proach used here for sequential binding of ligands yields some 
novel and illuminating insights. 

n-l n 

Kl % = k,b + klko + . . . 
. 

+klkn+&ko +kz&+***= C C kj,kjz 

. j,=l j2= jl+l 

. 

. 

. 

. n-i+1 n-i+2 n 

K&....Ki = c c . . . c k. k. . ..kj 
Jl Ja i 

jl =l jz=jl+l jl=ji,l+l 

n = c 

(8) 

(9) 
k. k. . ..k. 

Jl JZ Ji 

jl<j2<. . <j, 

(10) 
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IPA 

2PA 

3.PA 

l,SPh 

2,3% 

1,3m2 

As a bridging step toward our goal we shall examine first a 
three-site system. The specific site equilibria may be represented 
as in Equation 11. Consider the specific site species IPA. There 
ia only one path for going from P to IPA; hence we can define a 
kl but can place no constrainte on its magnitude. The same is 
true for SPA and rPA. Thus for stoichiometric uptake of one 
ligand we get three site binding constants but no constraints. 
Now consider I.~PAz. Since either of the two occupied sites could 
have been filled in the second step, we can define two new site 
binding constants for the reactions going from a member of the 
ensemble of the stoichiometric species PAI to the specific site 
species &‘Aa. Furthermore, we can combine the two successive 
equilibria in the upper and lower paths leading to I.IPA~ to give 

(1d’Aa) = hh,.(P)b@ = kaka,~(P)(A)~ 

from which it follows that 

(12) 

kk,a = Ma,1 03) 

Thus from the formation of the specific site species QPA~ we 
obtain two site binding constants and one constraint. Corre- 
sponding arguments for a,&‘Az and &‘A2 give additionally two 
new site binding constants and one new constraint for each 
species : 

Ma,. = u3,a 05) 

Since there are three such species, we generate a total of 2 +3 = 6 
site binding constants and (2 - 1)3 = 3 constraints from the 
second stoichiometric step, PAI adding A to produce PAS. Turn- 
ing now to i,z,sPA~, we see that three new site binding constants 
are needed since any of the three sites could have been filled in 
the third step. As for constraints the chart shows that there are 
six different paths for going from P to I. 2, SPAI. The triple prod- 
uct of Its for each of those paths must be equal to that for any 
other. Hence, in principle we can write five relationships between 
the respective triple products. Three of these relationships, how- 
ever, are redundant since they have already been found in our 
analysis of the formation of PAZ. For example we can go from P 
to I,BJPAP by the two top paths in the chart by filling the sites 
in the sequence 1, 2, 3 and 2, 1, 3, respectively. The former path 
ia governed by the product klk1,zk1,2,8 and the latter by k&~,lkl,~,~. 
Since both paths have the corresponding initial and final states 
(sites all empty and all filled, respectively), the.values of AG” 
for the two paths are identical and hence 

klkl,a%,a,. = Wa,lkl,a,s (16) 

1,2,3& (11) 

TABLE I 
Nume&at values of various binding parameters for a macromolecule 

with three bind&a sites 

Name of parameter 

Number of ligands bound = i 
Number of different specific site 

species or configurations with i 
occupied sites = vp~i 

Number of different paths for go- 
ing from PA+i to a specific site 
species with i occupied sites = i 

Total number of paths for going 
from PAi- to PAi = (vpni)i = 
Vi 

Total number of site binding con- 
stants needed to describe con- 
versions of PAi- to PA< = vi 

Number of new equations relating 
ka generated by different paths 
from PA,-1 to specific site species 
with i occupied sites = (i -1) 

,Total number of new equations re- 
lating ~EI generated from differ- 
ent paths for going from PAi- ta 
PA< = vp~i(i - 1) 

Number of independent ks gener- 
ated in going from PAS-~ to PAi 
= Vpnii - VP*i (i - 1) = VP*< = P 

”  

Numerical value for indicated 
stoic&metric species 

- - 
P 

- 

0 
1 

0 

0 

0 

- 

- 
PA1 
- 

1 
3 

1 

3 

3 

0 

0 

3 

- 

- 
PAI 
- 

2 
3 

PAI 

2 

6 

6 

1 

3 

3 

- 

3 
1 

3 

3 

3; c = 12 

2 

2;c=5 

l;C=7 

But this equation tells us nothing new since (if you cancel k1,2,( 
from both sides) it is the same as Equation 13. A similar analysis 
going through each of the intermediates 2,aPA2 and I,IPAz, respec- 
tively, generates two additional redundant relationships. Thus 
it is only the three paths going through the three different specific 
double-ligand site species that generate the three new product 
constants and consequently the (3 - 1) = 2 nonredundant rela- 
tionships between them, viz., 

klk1,&,z,s = kh,~k,,~,e (18) 

The characteristics of a three-site system are summarized in 
Table I. 

From the analysis of a three-site system, the general formula- 
tion for an n-site multiple complex appears in a straightforward 
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fashion. Consider one specific site species which is a member of TABLE II 
the ensemble constituting the stoichiometric species PAi. This Comparison of numbers of different kinds of binding constants 
specific site species has a particular configuration of occupied for a macromolecule with n binding sites 
sites, the total number occupied being i. Since any one of these 
occupied sites could have been filled in the ith binding step, there Number of biidii Total number of Number of Number of 

are i different paths to reach this specific site species from the set 
sites, * site bffdfng independent site stoichiometric 

COKlStalltS biidii constants binding constants 

of species with (i - 1) occupied sites. Thus we must designate i 0 
site binding constants for each of the specific site species (i.e. 
confgurations) with i occupied sites. The total number of differ- 

3y 
4 

ent specific site species in the stoichiometric class PAi is (see 
Ref. 3) 

r&l)-*- (n-i+l) tl! 
i: . = 0: = VPAi (19) 

6 
8 

12 

4 
12 
32 

192 
1024 

24576 

3 2 
7 3 

15 4 
63 6 

255 8 
4095 12 

Consequently the total number of site binding constants, vi, that 
are associated with the stoichiometric step from PAi- to PAi is 

chiometric steps. The complete summation then is the total num- 
ber of site binding constants, vk, associated with all the site 

vi = (v pA.)i = * (20) equilibria in the multisite binding system; that is 
1 

Furthermore, by analogy with the three-site system, we can also 
write (i - 1) constraint equations for each specific site species, 

(28) 

and hence up&i - 1) such equations for the ensemble PAi. 
Consequently the total number of independent site constants, Furthermore the total number of independent site binding con- 

Fi, that are associated with the stoichiometric step from PAi- &ants, Fk, for a multisite system with n sites, i.e. the number of 
to PA< is degrees of freedom, can be evaluated using Equations 21 and 24: 

~~ = (v,.)i - (v,,)(i-1) = vpA, = (a) 
1 I 

Fk = 2 Fi = i vpA, = 2”~1 

i=l i=l 1 
(29) 

For a complete description of a multisite system we must 
evaluate summations of Equations 20 and 21. These can be ob- 
tained from the following algebraic analysis. 

RELATIONS OF STQICHIOMETRIC BINDING CONSTANT@ WITH 

OCCUPANCY-DEPENDENT SITE BINDING CONSTANTS 

From the binomial theorem we know that At thii stage we might compare first the total number of each 

P(l+A)” = 2 & @)(A+ 
type of constant for a multisite system. For a macromolecule with 

(22) n sites, the stepwise uptake of ligand can be correlated by n 
i=O stoichiometric binding constants. On the other hand a very much 

=P++& (P)(A)i 
larger number of site binding constants are needed to define the 

(25) equilibria between all configurations of occupied sites. A compari- 
i=l son between the number of stoichiometric and independent site 

If we set A = P = 1 and subtract unity from both sides of Equa- binding constants for a few simple cases, typical of those fre- 
tion 23, we obtain quently encountered in proteins constituted of subunits, is il- 

lustrated in Table II. 

9-l = i & (24) It becomes immediately obvious that an experimental binding 
study that leads to a full determination of the stoichiometric 

‘Ly straightforward procedures we can also show that 

A .& [P(l+A)"] = A f: '! 7 n-i)i i: i (P)(A)i-l (25) 
id 

from which it follows (on carrying through the differentiation of 
the left side) that 

n(P)(A)(l+A)"-' = i & i (P)(A)i 
i=l 

(26) 

Again setting P = A = 1, we find that 

binding constants K is always inadequate for a complete specifica- 
tion of all of the site binding constants k. 

The complementary problem, however, is one that can be com- 
pletely resolved, at least in principle. That is, if all the site con- 
stants are known, the stoichiometric binding constants can be 
specified. The necessary relationships can be derived as follows. 

Consider a protein with individual sites numbered. In the 
ensemble of specific site species constituting the stoichiometric 
class PAi, let us focus on one of the site species with a specified 
configuration of occupied sites, which we will designate as 
jl,j*,...jiPAi, where the indices j,, jz, etc. are listed in the order 
starting with the lowest-numbered site and increasing in ordinal 

n2"-' =2&i 
fashion. One reaction pathway for generating thii species by 

(27) successive addition of ligands is shown in Equation 30. That is 
i=l the lowest numbered site is filled first, the next higher numbered 

The ith term in the summation on the right side of Equation 27 site second, etc. The concentration of the site species formed can 
is the number of site binding constants describing the ith stoi- be expressed by Equation 31. The concentration of the stoichio- 

k 
31 

k 
jlA2 

k. 

P # 
31 

PAI @ 
JltJ2***Ji 

31 J2 
PA2 t3... # 

jl,& JO l l ji 

PAi (30) 



(PAi) = i kj,kj,,jz**"*kj,,j,,,..j @> (A? 
j,<j, < . ..<ji i 

metric species, (PAij is then given by the sum of concentrations =k kjl 31 
of each of the specific site species that are within that stoichio- 
metric ensemble, Equation 32. k 

jl;j9 
=k 

s1vji & 
Now let us turn our attention to the ith stoichiometric step: 

for which 

5 k.h,jd3 = k33vji,&v&,j3 
'*i-l +A 2 P+ (33) . . 

. . 

. . 

. . 

Taking account of Equation 32, with suitable indexing to dis- 
tinguish the stoichiometric species, we obtain 

n 
x 

j~5i2~..<5i 
(kjlkjl,ja"ekjl,ja... j ) i 

Ki = n (35) 

c (kj:kj:,j.""kj:,j;,...jil-l) 

j:< ji<. . . <jiel 

Through Equation 35 the stoichiometric binding constants can 
be linked to a set of (2” - 1) independent site binding constants. 

Equation 35 is necessary for the most general situation, that in 
which each site changes its afhnity as ligand is bound at any other 
site. When the interactions between sites are not so all-pervasive, 
Equation 35 can be reduced to simpler forms. 

If the sites are independent, unchanging in afhnity as other 
sites are occupied, then the site equilibrium constants fit the 
following constraints; 

kj, = k. JI 

kjl,jp = k. JZ 
. . 
. . 
. . 
. . 
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(31) 

(32) 

(38) 

. 
k. k Y. . v. . ..V. 

Jz,Ja,...ji = ji J1>Ji Jn,Ji J&1’31 

If all of the interaction parameters are equal then 

k. 
Jl,j8t.-.3i 

= kj vi-' (39) i 

and Equation 35 can be reduced to 

K i (equal interaction) = vi-lKi(independent site) (40) 

Finally we might return to the very simple situation, all sites 
independent, unchanging, and equivalent in aflinity for ligand. 
Under these circumstances all of the site binding constants are 
equal. 

kj, = k 

kj, 9 j, = kj, = k 
. . . 
. . . 
. . . 
. . . 

k. Jl,&>...ji 
=k. =k 

Ji 

(41) 

Consequently each term in the summation in the numerator of 
Equation 35 becomes k’. The number of terms in the numerator 
is n!/[(n - i)!i!]. The denominator can be reduced in a corre- 
sponding manner. Consequently Equation 35 becomes 

k. Jl&j..mji = k. 
Ji 

Under these circumstances Equation 35 can be reduced to 

n! 
Ki(independent, equivalent sites) = (n-i)! i: ki 

Cn-(i-l;;! (i-l): 
ki-l 

Ki (independent sites) = 

E 'kjlkj2...kj ) 
jl<j2<. . j . i 

(kj;kj,'. . . kj, ) 
i-l 

(42) 

(37) 
n-i+1 = Tk 

a result well known from earlier considerations (2,3). 

Equation 37 is equivalent to Equations 7 to 10. 
Alternatively, the interactions between each pair of sites may 

be expressed in terms of an interaction parameter Dj,j’. Thus if 
only interactions between pairs of sites are present (13), we may 
write’ 

1 It might be of interest to note that the total number of con- 
straints in Equation 38 is n for the k values and n(n - 1)/2 for the 
v values, or a total of n(n + 1)/2. This number may be compared 
with the third column of Table II: 

RELATIONSHIPS BETWEEN BINDING CONSTANTS AND EMPIRICAL 

PARAMETERS WHEN AFFINITIES ABE OCCUPANCY-DEPENDENT 

We begin by writing the complete equation for r, Equation 8, 
in the alternative form (2, 3, 13), 

(43) 

where 

Z = 1 +; ( ;I Kj)(A+ 
5.4 .k?=l 

(44) 

2 3 3 
3 6 7 
4 10 15 

that is, 2 is the denominator of Equation 3. If we use Equation 
35 to replace the Kt factors in Equation 44 we obtain Equation 
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z = 1 + ikjl (A) 

n 

+ . . . + c 
k. k. 

J1 Jl,ja”* 
k 

jl,j2,.--ji 
(A? 

31 jl<j2<. . .<j. 1 

+ l * .  + klkl>2***kl>2,,.n (A? 

45. Clearly in the general case thii yields a very unwieldy result 
if Equation 45 is inserted into Equation 43 to give a detailed 
explicit expression for r. Nevertheless, some useful insights are 
generated from this approach when it is applied to special cases 
of common interest. 

Consider a situation in which a three-site macromolecule has 
two classes of independent sites of unchanging aflinities. These 
might be designated as follows: 

kI = ka 

kz = ka 

4 = ks 

(46) 

Under the constraints specified we can also write 

ka>s = k B 

With these specifications Equation 45 becomes 
2 = 1 + (2ka + k B )(A) + (kt, + 2kakB)(A)a + k'&,(A)= 

= [l + k&A)] cl + ka(A)la 

From this it follows that 

$ = k&l + k,(A)? + [ 1 + k&A)12[1 + k,(A)lk, 

(47) 

(48) 

1 (49) 

Consequently a simple explicit equation for r can be obtained by 
insertion of Equations 43 and 49 into Equation 43, viz. 

r=i%&J + i+& 
This result is formally the same as would be obtained from Equa- 
tion 6, as indeed it must be, since kl = kz = ka and ka = ks. Con- 
sequently curve fitting with Equation 6 will yield the site-binding 
parameters. In fact, as one might expect, curve fitting with Equa- 
tion 6 is always proper when the sites are independent. 

Now let us turn to a different set of constraints on a three-site 
system. Suppose that at the outset we have three identical sites 
(e.g. three identical protomers in a quaternary ensemble). Under 
these circumstances we may write 

kl=b=4=kI (51) 

Let us assume, furthermore, that the uptake of a second ligand 
at any one of the open sites occurs with the same aflinity as would 
the uptake of the first, but that after that the affinity for the third 
ligand of any site species is altered (accentuated or attenuated). 
Under these conditions, which would correspond to an interact- 
ing system, we may state that 

k ~,a = k,a = ka,a = % (52) 

(45) 

The constraints of Equations 51 to 53 lead to the following rela- 
tions for 2 and r, respectively: 

Z = i + 3kI(A) + 3k12(A)' + k12kII(A)" (54) 

3kI(A) + 6k12LG2 + 3~2kII(A)3 (55) 
*= 

1 + 3kI(A) + 3k12(A)a + kIakII(A)= 

If we were to describe this interacting 3-site system as consist- 
ing of one class of two sites of affinity k, and of one class with one 
site of affinity k,g and then apply the algebraic format of Equation 
6, we would obtain 

For an interacting system, however, there is no unique relation- 
ship between the algebraic parameters k, and ka and the site 
binding constants kI and kII. For example, if at the outset we 
have three identical sites so that 

kL=k=&=kI 

then it is not possible to have simultaneously 
(51) 

kl = 4 = ku and4 = kB (56) 

This impossibility may also be stated in more general terms. 
Equations 59 and 55 are two different functions. If Equation 55 
fits a given set of data exactly, Equation 59 could not do so. 
Equation 55 arises from a general stoichiometric treatment valid 
for interacting, as well as noninteracting, systems. 

A vast number of proteins are constituted of 4 to 12 protomeric 
subunits (14, 15). Conformational adaptations frequently are 
linked with the binding of one or more ligands, and these struc- 
tural accommodations may accentuate or attenuate binding 
affinities at individual sites. Furthermore, as soon as even the 
first site is occupied, the others may no longer be in strictly sym- 
metrical environments. Unless one has additional probes, such as 
spectroscopic or magnetic molecular sensors, it is not feasible to 
specify the behavioral features of individual sites. Nevertheless, 
it has often been the custom to distinguish between sites of an 
ensemble of n identical subunits and to classify a certain number, 
x in one group (e.g. strong binders) and n - x in another category 
(e.g. weak binders). For example, in aspartate transcarbamoylase, 
with six originally identical sites, the observed binding of nucleo- 
tides has been rationalized (16-18) in terms of one group of three 
sites with a strong binding aflinity and a second group of three 
sites with a weak binding afllnity. In actual calculational practice 
this means that the binding data are fitted to an algebraic format 
that is a special case of Equation 6, that is, 

3k&) 3k+(A) 
p=-+- (57) 

1 + $$A) 1 + kg(A) 

in which lc, and ks are empirical parameters. There is no doubt 
that the observations can be fitted to an equation with two ad- 
justable parameters k, and ka (in addition t.c the choice of 3 and 3 
for the coefficients in the two terms of Equation 57). However, 
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k, is not, the site binding constant, k~, for uptake of the first 
ligand at, any one of the six sites. In fact, in an interacting system 
there is no unique relationship between lc= and the site binding 
constants. The parameters obtained by a statisti& best fitting of 
binding data to an equation of the olgelrraic form of Equation 6 are 
not site binding constants if there are conformational or o&r m- 
wmmodatkms that change the binding ajhity of sites with progres- 
sive occupancy of ligands. Consequently it is necessary to develop 
alternative methods for assessing the contributions of site-site 
interactions and conformational changes in multiple ligand 
binding. 

TRENDS IN STOICHIOMETRIC BINDING CONSTANTS WHEN 

THERE ARE INTERACTIONS BETWEEN SITES 

A correlation of equilibrium binding data in terms of stoichio- 
metric binding constants provides the most, economical algebraic 
description of experimental results. For a macromolecule with 
n binding sites the number of stoichiometric binding constants 
is simply n. Of course from Kis alone one obtains no direct, in- 
sight into the behavior of specific individual sites. A thermody- 
namic analysis in itself cannot reveal a molecular perception. 
On the other hand, interactions between sites due to conforma- 2 4 6 6 IO I2 14 I6 

tional accommodations or other causes, do manifest themselves i 
in Ki since the stoichiometric equilibrium constant implicitly 
reflects the properties of its constituent site equilibrium constants 

FIG. 1. Affinity profile showing variation of the weighted stoi- 

(see Equation 35) once we introduce and define them. 
chiometric binding constant, iKi, with stoichiometric binding 
step, i. Dashed line shows linear dependence when binding sites 

Thus in the limiting situation of identical independent binding are identical and unchanging in affinity; the intercept on the 
sites, Ki obeys Equation 42a z-axis is (n + l), as required by Equation 58. The circles represent 

stoichiometric binding constants for binding of cupric ion by 

K.=n-lcl k 
bovine serum albumin (19). The values of Ki illustrated were 

1 Wa) 
i 

computer best fits determined by Dr. John E. Fletcher, Division 
of Computer Research and Technology, National Institutes of 

From this it follows that Health. 

iKi = k(n+l) - ki ($8) jl,j2,.i3 
P+3A g. 

~l,j2,j3 PA3 
(59) 

In other words, iKi should be a linear function of i. Thus, if the stant, I, might be given as 
values of Ki that fit the experimental observations have been 
established, iKi should be linear in a graph uersus i (Fig. 1). I=k.k 

Jl j,,jakj,,j,,j,'kj,kj,kj, (60) 
Such a graph can be made without any knowledge of n, the total 
number of binding sites, which is usually very difficult, to deter- 
mine with confidence from binding observations alone (1). If the For a stoichiometric reaction an appropriate definition is 

binding data very clearly fit a linear graph of iK< versus i, then, PA + 2.4 2 P& (61) 

as Fig. 1 shows, n can be established by a straightforward linear 
extrapolation to the intercept on the i axis. * = hki~(Ind)~(In*) (62) 

When there are interactions between sites that accentuate or 
attenuate binding affinity, the data for iKi, the affinity profile, where (Ind) indicates “independent sites” and Ki(Ind) is given 

will depart from the linear ideal relation shown in Fig. 1. At by Equation 37. 

first glance one would expect accentuating interactions (“positive Now consider how these definitions can be simplified for the 

cooperativity”) to lead to points above the line, attenuating special case where all of the sites are equivalent but not, inde- 

interactions (“negative cooperativity”) to place them below the pendent. Let, Ki be the site binding constant for the addition of a 

line. A more careful examination of what, we mean by such inter- ligand to any open site on a molecule with (i - 1) bound ligands. 

actions shows, however, that the experimental trends are mani- 
Thus 

festations of more complicated behavior. ‘i = kj,,js,... j i 
for my set of i different j's (63) 

To define an interaction precisely and quantitatively we must 
specify two things: (a) the specific reaction that is being con- For reaction (Equation 59)) we can now describe I as 
sidered, and (b) the reference or noninteracting reaction that is 
the basis of comparison. The reaction to be studied can be either I = x&%/x~= = III2I3 (64) 

a stoichiometric or site binding step and can involve the addition 
of one or more ligands. As the reference base, we will use the 

where Ii is the contribution of the ith single-ligand addition Step: 

constant (or constants) for binding of the first. ligand on the Ii =q& (65) 
grounds that there will. be no interactions when the other sites 
are not occupied (a second possible choice will be discussed later). Turning to stoichiometric reaction (Equation 61)) we c&n 
For site binding reactions the definition of an interaction con- obtain an expression for Ki by substituting Equation 63 into 



Equation 35: 

c K& . . xi 

Ki = j,<...<ji (66) 
c wa.. .Kiml 

j:c . . <j .’ l-1 
Each term in the numerator is the same and there are (n - i + 
l)!/i! such terms. Similar statements can be made for the de- 
nominator and thus 

n-i+1 
q= i xi 

Clearly the stoichiometric constant is made up of two parts: 
(a) a statistical factor indicating the number of possible site re- 
actions in the ith stoichiometric step, and (b) an aflinity factor 
indicating the site binding afhnity of the unoccupied sites when 
(i - 1) are occupied. 

We can now define a reference constant as 

K Xl-i+1 
i(Ind) = i Xl 

The interaction constant for reaction (Equation 61) becomes, 
therefore, 

I =wc3/K12 (69) 

It is interesting to note that the interaction parameter for the 
ith stoichiometric step is also the interaction parameter for the 
site binding reaction in which the ith ligand is added: 

Ii = Ki/KI (Ind) = ‘I/‘, (70) 

Now consider a graph of iKi versus i for a system with equiva- 
lent sites. The ideal line for independent sites is, from Equation 
6% 

%(Ind) = (n + 1)X, - iY, (71) 

which is a straight line with slope ~1 and x and y intercepts of 
(n + 1) and (n + 1) ~1. The actual relationship, Equation 67, is 

iKi = (n + 1) xi - iKi (72) 

This is not a straight line since Ki is not constant with varying i; 
nevertheless, the z intercept is still (n + 1). The difference be- 
tween an actual point and the ideal line is 

iKi(Ind) - Xi = (n - i + 1) (Xi -Xi) (73) 

Thus if the ith point is below the ideal line shown in Fig. 1, 
KI > Ki and the interaction for the ith step is attenuating. Con- 
versely if the ith point is above the ideal line, KI < Ki and the 
interaction is accentuating. This is true for both the stoichio- 
metric and site reactions. Thus the iki versus i graph is an ideal 
means to evaluate such interactions when all of the sites are 
equivalent. 

We can also define the free energy of interaction as 

AGio = RT ~“CK~~~~~,/K~I (74) 

Using equation 70 we find 

AGi" = RT b-&&l (75) 

To isolate the interactions that are introduced in the ith step 
we simply write 

AGi" - AGimlo = RT ln[xi-,/xil (76) 

It is pertinent to note that this relationship is valid no matter 

what is taken as the reference reaction so long as it is used as 
reference for calculating both AGi” and AGi-1”. 

With the foregoing interaction analysis as a foundation, we 
can examine alternative choices of the basic reference reaction 
that may be advantageous for revealing the type of interaction 
occurring in individual binding steps. For example, the binding 
of the first ligand may be accompanied by a conformational ac- 
commodation of the macromolecule that alters the site binding 
aflinity of the residual open sites. After the addition of this 6rst 
ligand,) successive uptake of all additional ligands could occur 
with aBinities following a simple statistical pattern. For such a 
system the aflinity profile would follow a dashed line from the 
point at i = 2 to that at i = 15 in Fig. 1. The weighted stoichio- 
metric constants, iKi, for 2 I i I n would fall on a straight line 
that follows the algebraic equation 

iKi = (n+l) f& - i9(, 0-l) 

Clearly the slope of this line is not the same as that of the “ideal,” 
but the intercept on the abscissa is the same (n + 1). 

This analysis can be generalized to any consecutive experi- 
mental points in an aflinity profile. Whenever two or more con- 
3ecutive points fall on a straight line with an intercept at (n + 
1) on the x-axis, then the corresponding ligand binding steps 
have binding constants that are related purely statistically; the 
slope of this line is -Ki, the negative of the site binding constant. 
Thus for any point i on the aflinity profile, ideal behavior is de- 
scribed by a line connecting the points at (i - l), i, and (n + 1) 
on the abscissa. If interactions do appear in the ith binding 
step, then the observed value of iKi will fall above or below the 
line connecting the (i - 1)th point with (n + 1) on the abscissa. 
Furthermore, if we use the (i - 1)th point to define Ki(Ind), 

Ki(Ind) = q+-, (78) 

and insert this into Equation 74, the free energy of interaction 
becomes 

AGio = RT l"(~iml~i) (79) 

In essence then, if the (i - 1) step is the reference base, Equation 
76 is replaced by Equation 79. 

CONCLUSION 

It has long been recognized (8,9) from an analysis of the inter- 
actions of polyvalent acids and bases that the number of (“mi- 
crosopic”) site binding constants that must be defined, for an 
interacting system, will exceed the total number of binding sites, 
n (Table II). Thus a full description of individual sites at each 
stage of occupancy requires additional sources of experimental 
input (or ad hoc assumptions) besides stoichiometric binding 
data. On the other hand, it has not been realized that a conse- 
quence of a detailed analysis of the relationships of stoichio- 
metric (“macroscopic”) and site (“microscopic”) binding con- 
stants is that it is not feasible to use an expression of the form 
of Equation 6 with n terms in it to obtain site binding constants. 
The empirical parameters, k,, ks. . .kh, so obtained are not 
uniquely related to the site binding constants. It is important to 
recognize that this principle applies to the binding of substrates 
and of effecters by multimeric proteins constituted of identical 
protomeric subunits. Such binding has often been analyzed by 
algebraic relations with the format of Equation 6 and the kh 
parameters so obtained have been mistakenly assigned tc par- 
ticular sites of the quaternary ensemble. 

On the other hand, the distribution of a ligand between bulk 



solvent and a binding macromolecule can be described economi- 
cally and definitively in terms of stepwise stoichiometric equilib- 
ria. For a molecule with 7t binding sites, the number of stoichio- 
metric binding constants, Ki, required is TL Furthermore, inter- 
actions between sites, whether they accentuate or attenuate 
binding affinities, manifest themselves in K;. With careful 
definitions of interaction energies one can even isolate and char- 
acterize the type of interaction associated with individual 
stoichiometric binding steps. It seems clear, therefore, that a 
stoichiometric formulation provides the most versatile format 
for a thermodynamic analysis of the interactions of small mole- 
cules with a biological macromolecule. 
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